# **Evaluating the Relationship between Cognitive Style and Pre-service Teachers' Preconceived Notions about Adopting Console Video Games for Use in Future Classrooms**

# Abstract

This article explores the impact of perceptual cognitive styles on pre-service teachers' attitudes toward video games. Using a cognitive style continuum measuring *field dependence* and *field independence*, the authors conducted an exploratory study to measure the potential impact of cognitive style on pre-service teachers' dispositions towards the use of games in their future classrooms. Results showed that participants who planned on becoming teachers were generally found to be more field dependent than peers who elected other major fields of study. These participants also demonstrated a general reluctance towards using console games in their future classroom situations. After the brief experience playing the console game, however, these preservice teachers' attitudes changed significantly with regards to their game playing attitudes and preferences.

## Introduction

In this article, we review the results of a study in which we investigate the relationship between teachers' pattern recognition aptitudes and their preconceived notions about console video games. We hypothesized that these attitudes would correlate with whether or not teachers recognize console video games as being useful for teaching. For the purposes of this study, we elected to analyze a continuum measuring *field dependence* and *field independence*, a well-known perceptual concept articulated by cognitive psychologists in the 1960s. Using the Group Embedded Figures Test (GEFT) developed by Witkin and colleagues (1962), we explored the impact that field dependent-field independent cognitive style has on participants' preconceived impressions and eventual enjoyment of video games. We also investigated the connection between console choice type (Xbox 360 vs. the Nintendo Wii) and those attitudes.

The present study was inspired by previous work (Authors, 2009) that explored teachers' general acceptance and use of serious games in the classroom. We extended that prior research by investigating whether or not a simpler gameplay mechanic would have any significant affect on teachers' attitudes towards games as useful instructional interventions. There has been some speculation in the literature that technological experiences leave a lasting impression that influences both cognition and affective response. For example, Salomon et al. (1991) suggest the phenomenon of *cognitive residue* to describe a situation in which "the intellectual partnership with a computer tool can leave a *transferable* cognitive residue in the form of, for example, a generalized ability for self-regulation and guidance" (p. 6). Such residue would in turn "allow them to become involved in higher order activities in subsequent partnerships with intellectual tools" (p. 6).

Pillay et al (1999) further theorized about the encoding of internal knowledge structures based on exposure to gaming technologies. They suggested that novice players initially encode surface structures that are later triggered by situations that convert these surface structures to organized knowledge. This work implies that exposure to gaming technologies has the potential to leave long lasting impressions of both the affective and cognitive variety if games are later encountered a subsequent time in the classroom as a potential teaching tool for adoption.

For the sake of this study, we chose to focus primarily on the attitudes of the participants towards console video games. We believe that console video games, although less likely to be used in the classroom than computerized educational games, are interesting because they often offer more sophisticated control mechanisms, better graphical capabilities, and robust methods for socializing online, all characteristics that will likely emerge in next generation educational technologies. We hypothesized that individuals found to be field independent would at least initially demonstrate more positive attitudes towards console games than their field dependent counterparts and, correspondingly, would tend to play console games more often during leisure time hours. Conversely, we believed that field dependent individuals would find console games to be more complicated and difficult to learn unless they were provided instruction on game play mechanics prior to playing. We also knew from our own experiences as well as those expressed in the literature (most notably in Gee, 2003) that those who play video games tend not to require instructional manuals to learn how to play. Rather, most seem to acquire the process knowledge required to succeed in video games through emphatic trial and error, something we believe may be counterintuitive to the pedagogical methodologies embraced by those aspiring to the teaching profession.

Finally, we hypothesized that a correlation would exist between a field dependent/field independent (FD/FI) cognitive style and participants' general enjoyment of console video games, and further that teachers generally would lean more towards displaying field dependent tendencies than their peers who enter into other professions. These ideas about cognitive style have been previously explored in the literature (Altun & Cakan, 2006; McKenna, 2006; Sadler-Smith & Riding, 1999), but not fully investigated in relation to video games. We also suspected based on the descriptions of individual preferences and professional selections associated with each style that teachers –especially those teaching in non-vocational fields and/or in the humanities –would be found to display field dependent tendencies. We felt that, if these suspicions could be confirmed, they might account at least partially for a generalized reluctance to use *any* type of video games in the classroom. The literature from cognitive differentiation offers some useful theoretical grounding for this study.

# Differentiation as Measured by Cognitive Style

People orient themselves differently visually according to their idiosyncratic psychologies of perception. One well-documented difference is found in the dichotomy between "field dependent" and "field independent" perceivers. The seminal test for these tendencies is described in Witkin et al. (1962). The original test involved a participant sitting in complete darkness, observing a luminous rod that is surrounded by a luminous frame. Both the rod and the frame can be tilted, and both are tilted by the researcher before the participant begins the test. The goal is to orient the rod vertically by providing instructions to the experimenter. In term of providing clues about spatial reasoning, Witkin et al. (1962) explain that (p. 1-2):

Some subjects tip the rod far towards the angle of tilt in the frame in order to perceive it as upright, thus determining its position mainly in relation to the visual field that immediately surrounds it. Here and in other perceptual situations these subjects find it difficult to overcome the influence of the surrounding field or to separate an item from its context. It is because of this characteristic that their perception has been designated field dependent.

The rod and frame test later evolved into the Group Embedded Figures Test (GEFT) in which participants reviewed a rather complicated set of figures in which other images were embedded. Participants were asked to locate/identify the embedded images within a certain time frame. Right and wrong answers and number of completed items are recorded and scaled based on the overall success they enjoyed.

The tests were intended to demonstrate that field dependent perceivers see objects and context as a single frame of reference and have trouble distinguishing an individual object from the context of its surroundings. In contrast, Witkin and his colleagues noted (p. 2):

"Other subjects, in contrast, are able to bring the rod close to the true upright, perceiving it independently of the surrounding field and determining its location with reference to body position. In perceptual situations generally, such people are able to distinguish an item from its context. Their perception is field independent".

The test also measures performance as related to psychological differentiation, which falls on a continuum between full field dependence and total field independence. In other words, some people are more likely to see context and an item as one, some will possess the ability to see an item independently from its surrounding context, and still others will be slightly included toward one perceptual pole or the other.

While this perceptual difference among individuals is interesting, what is even more relevant to our inquiry is the impact these variations appear to have on other psychological dimensions, such as affect, cognition, top-down versus bottom-up thinking and perceiving, and spatial reasoning. The test has also been shown to measure relative independence of how much an individual depends on external support for decision making and understanding (Bloom-Feshbach, 1980; Witkin, Goodenough, & Oltman, 1979).

We also learned from a review of the literature that field dependent learners would more likely be distracted by dominant but irrelevant features and would less likely be able to organize their perceptions in less structured environments like those found in many video games (Ayersman, 1995; Chen & Rada; Burton, Moore & Holmes, 1995). This research also seems to allude to the fact that field dependent individuals better orient themselves by way of top-down thinking, rather than the bottom up approach of case-by-case problem solving that is prevalent in overcoming obstacles in video games. In fact, there seems to be some evidence that top-down thinking can actual impede successful gameplay (Lovrich, 2006)

Those most successful at modern video game play tasks can process visual information rapidly, are generally self-sufficient learners, are capable of complex reasoning, and prefer to learn through trial and error, rather than being instructed on how to do complete a task prior to attempting something new (Gee, 2003; Loh, 2009). However, some research suggests that teachers are the opposite in that they are prone to be more linear types of thinkers and prefer to receive instruction prior to attempting new tasks (Huebner, 2009). In addition, the concept of removing the fear of being wrong and learning from mistakes like what is common during video gameplay can be off-putting to these individuals (Kenny & Wirth, 2009). This review of the literature prompted us to consider a possible correlation between perceptual differentiation and perceptions about their own abilities to successfully participate in video gameplay and their using games in their future classrooms.

# **Cognitive Differentiation and Game Playing**

Gee's (2003) widely cited book on video games, learning, and literacy opened the door for viewing video games in terms of their relationship to cognition and visual perception (i.e., they are a technology that aids in thinking and learning). Gee suggests that the best research being done in cognitive science is very similar to the learning theories that are being capitalized upon by well-designed video games. In particular, he notes that games are embedded in economic, historical, and political practice, just as learning is embedded in the real world, and that games afford opportunities for pattern recognition, an ability that humans excel at and that long has been studied under the label of connectionism. It was this view of cognition that caused us to wonder whether there might be differences between the way teachers think visually and their media-centric students.

Connectionism is a view of learning that argues that humans learn best through specific experience rather than through abstract principles and logic. As Gee (2003) explains, "they think best when they reason on the basis of patterns they have picked up through their actual experiences in the world, patterns that, over time, can become generalized but that are still rooted in specific areas of experience." In general, logic suggests that excellent pattern recognizers are more positively situated to appreciate and enjoy the various features of video games. Puzzles that require pattern recognition skills of players are important features of games that are well documented in numerous game design texts (Schell, 2008; Rouse III, 2005; Koster, 2005; Juul, 2005; Salen & Zimmerman, 2004). However, it is natural that some types of players will be more adept at solving puzzles than others. For instance, we might speculate that those gamers found to be field dependent require more extensive external help functions and aids (such as cheats, for example) when learning how to solve puzzles. This is because games often require that the player be able to see game objects (tokens, widgets, characters, interactive objects, etc.) distinctly from game environments (backgrounds and non-interactive objects). There are also various types of puzzles, each with their own unique gameplay scenarios. These range from abstract puzzle games like *Tetris* to more sophisticated adventure games requiring complex interactions with characters and environments.

Sports games provide additional examples of the complex puzzles found in games. When playing a sports game, a player must decipher and adapt to their chosen character's particular skills and abilities, respond and react to particular environmental events (such as the wind blowing or icy or rainy precipitation), understanding scoring conditions, and be willing to play the game with what Salen & Zimmerman (2004) call the "lusory attitude," or a willingness to solve problems using non-straightforward methods. For instance, instead of merely picking up a golf ball and placing it in the hole, the player is willing to play by the rules in which she attempts to drive the ball down a field toward the hole using a golf club. Similarly, in sports video games, the additional challenge presented by complex variables is not only accepted, but appreciated. The lusory attitude is certainly important for gaming, but are some individuals more predisposed to adopt the lusory attitude than others?

In terms of specific cognitive styles and gameplay success, we believe that field dependent learners may have more trouble with gameplay mechanics than their field independent counterparts. Being unable to separate disparate elements of the game from other, perhaps superfluous elements (such as the heads up display, scoring mechanism, or graphical user interface), can easily prove overwhelming. This, in turn, leads to a difficulty in adopting the lusory attitude; the game is perceived as too difficult and frustrating, so the player is not willing to attempt to solve the game's puzzles. Further, we suspect that most seasoned gamers do not want or need to read instructional manuals prior to playing. Rather, they prefer the trial and error method to learn how to play games. As a result, instructional manuals are underdeveloped or minimally written, and this too proves frustrating for non-traditional gamers.

Traditional teaching methods often emphasize a 'first teach about, then do' approach to learning. By contrast, game play learning is based on player-learners successfully progressing through the game's levels by recognizing its patterns. Successful gameplay requires that the player-learners adapt and refine those patterns throughout the duration. Contrary to general classroom learning situations in which one correct answer is sought after, games have no single "right answer" that is determined in advance by the designer (Scott Kim, as quoted in Salen & Zimmerman, 2004).

Additionally, in terms of specific gameplay mechanics, one can imagine several gaming situations in which field independent perception is important. For example, in an adventure game, a player might be presented with a puzzle in which small items are camouflaged with the surrounding environment and must be collected and reassembled in a central location in order to open a hidden door to allow the player to continue exploring the area. In this type of situation, the ability to differentiate objects from environmental context is vitally important. Other games are quite situational in that they challenge players to quickly recognize holistic events that encompass environment, objects within the environment, and obstacles resulting from the interactions of these two virtual types. In these cases, the correctness of a possible solution would depend upon the circumstances. For example, many first person shooter games require players to quickly react to swarms of enemy NPCs as environmental obstacles further retard their progress. In challenges such as this, a holistic understanding of the level as a whole is necessary for success, but so is the ability to see and react to individual elements within the level as they appear and threaten the player. For these situations, field independence is crucial.

### **Methods and Analysis**

### **Research Questions**

For this study we reviewed the following questions:

- Are there any differences between the game-playing habits of pre-service teachers and their peers who are majoring in different fields? And are there any possible correlations between these game playing habits and dispositions towards the potential benefit of integrating games into their lessons?
- Does FD/FI cognitive style have any connection to preconceived notions about the relative value of using video games as an instructional tool?
- Are there any ancillary perceived negative characteristics about video gameplay that these individuals might have that would influence their adoption of video games in the classroom?

• Will actual experience and introduction to gameplay mechanics help to overcome some of these pre-conceived notions?

# Participants

This study was conducted with two randomly selected groups of undergraduate students enrolled in a pre-service teacher training class (N=58) at a large southeastern university. The make-up of the class was approximately three females for every two males. All participants were in their twenties. The instructor of the selected classes offered extra credit for participation and an alternative means to earn similar credit for those who did not wish to participate. No one in the class selected the alternative assignment.

A small survey was conducted with these participants to determine their game-playing habits and preferences. Based on these results, it was determined that almost 80% of the respondents had either never played a video game or played irregularly.

## Instrumentation and Implementation

We utilized a pre and posttest Video Games Preference Inventory (Attachment A) that we developed in conjunction with an independent panel of faculty who were experts in instructional and game design at the university. We began with approximately 25 questions that were suggested by the panel. This list was pared down for duplication and uniqueness so that we could determine three major concepts: participants' general attitudes towards games as a leisure time activity, and attitudes towards games as an instructional activity. The final version of this instrument asked ten specific questions that were graded on a five-point Likert scale. We added four multiple choice type questions and additional areas for participants to enter optional, openended responses. To verify reliability, we consulted one more time with our panel of experts that represented the fields of educational technology, research, and psychology. A split-half ratio analysis helped to inform the construct of the final version of the questionnaire, which resulted in a Cronbach's reliability ratio of .73 and a Spearman-Brown coefficient of .85.

Prior to administering the treatment, participants were given Group Embedded Figures Test (GEFT) to measure field dependence/independence. Then subjects were randomly assigned into two groups: one playing the *Tiger Woods PGA Tour 07* golf game on a Nintendo Wii, and another whose participants would play the same game on a Microsoft Xbox 360. This game was selected based on our supposition that this particular gameplay was both generic and non-violent, thereby minimizing content preference bias. A golf game was also chosen because it is a familiar recreational sport with a simple goal (put the ball in the hole) and basic game mechanics (select power, aim, and drive or putt the ball).

Individuals were taken into separate rooms in which they were randomly assigned to either console type. They were given pretests to assess their attitudes toward games and gaming in general as an instrument for teaching and learning. We then provided minimal instruction on the game play mechanics. The game was set up to use a "Play Now" mode, which eliminated the complicated player configuration that normally occurs during career mode gameplay sessions. Participants were then asked to play the first two holes of golf; the average duration of gameplay was approximately ten minutes. After playing, participants were asked to answer the questions on the post-test questionnaire.

Eight out of the ten questions on the pretest (Questions 2 - 8, and 10) were worded exactly the same as those asked on the posttest. Question 1 on the pretest asked how often participants played video games in the past, but the posttest question was revised to gauge their opinion of the console they had utilized during the study. The posttest question asked whether they felt that the console they utilized was intuitive. Question 9 on the pretest asked participants to report their views about playing video games. On the posttest, this question was modified to ask them to respond whether their experiences of playing during the study caused them to change their opinions and views on the mechanics of playing and would they be more interested in playing in the future. The data collected by these questions was important to our assessment about the attitudinal changes that occurred during gameplay.

It is important to note that we chose a console game rather that a computer game because we were curious to examine how much easier console games were to play (in large part due to a diminished control set) and we wanted to gain some insights as to whether follow-up studies might provide further indication as to which type of console game would have the most significant effect on attributions towards video games. Console games were introduced to reach out to new gaming demographics. As teachers have been shown to be less technically savvy than their peers (Shelly, Cashman, Gunter, & Gunter 2007), we wanted to find out whether a more user friendly console type of game might have a significant bearing on their dispositions and attributions.

### Data analysis

*Pretest preferences* The results from Questions 1 (I play video games regularly) and 2 (I would rather do other things) on the pretest survey both asked in different ways how often the participants played games and suggested a possible cause for non-play (namely, the lack of time). Taken together, these two questions added strength to our ability to infer significance from the responses. A review of responses to these questions indicates that a minority of participants (approximately 42%) played video games regularly. This percentage was relatively low given a recent statistic published by the Entertainment Software Association (2008) in which nearly 80% of individuals in this age group reportedly play games regularly. The fact that teachers as a group are familiar with and have less desire to play games for entertainment purposes than their peers in other professions may indicate one possible reason why games have not been integrated into the classroom on a widespread basis.

Question 2 asked whether the participants would rather be doing other things with their time than playing video games. Nearly 75% (43 out of 58) of the respondents indicated that they would rather be doing other things, providing further indication that video games were not a priority for them. In prior work (Authors, 2009), we explored the reasons for this occurrence. We found that, based on responses to Question 3 (video games are too complex), controller issues and game complexity appeared *not* to figure into their decisions whether or not to play. Upon further review, we found that responses to one of the multiple-choice questions at the end of the pretest survey appeared to contradict these results. Close to 70% percent of the participants (40 out of 58) indicated that one of the least desirable aspects of video games was that they were too complicated, that video games were too difficult to learn, or that playing them took too long. In one of the multiple-choice questions, we asked participants how familiar they were with games. Only 17% (10 out of 58) indicated that they were 'very familiar' with games, with the remaining

83% choosing either 'somewhat familiar' or 'not familiar' as their choice. Of this group, over 30% (17 out of 58) indicated they were not familiar with video games at all. This suggested that the decision not to play was a matter of conscious choice; preconceptions about learning how to play games factored into those decisions.

It is worth repeating that this particular group of students was composed of pre-service teachers who, we found in a previous study, tended to play video games less often than their counterparts in other professions (Authors, 2009). We hypothesized that one of the reasons for this was that because teachers generally follow the principle that learning usually requires some type of instruction, a trait that parallels the cognitive style found in field dependent individuals (Hong, Hwang, Tam, Lai & Liu, 2012; Pithers, 2000; Saracho, 1991). We set out to determine the impact their learning styles might have on these decisions. We decided to measure learning preferences using the Group Embedded Figures Test (GEFT) an instrument developed by Witkin et al. (1971) to measure participants' ability to differentiate independently in ambiguous situations.

We found that over 30% of the participants could be clearly identified as being field dependent (i.e., less likely to be able to independently work through ambiguous circumstances). The test manual for the GEFT (Witkin, Oltman, Raskin & Karp, 1971) presented a quartile system that established that from 10-12 correct responses was the cut-off between these two characterizations. Reports in the literature set a standard for an acceptable number of mistakes on the GEFT at 8 (Renna and Zenhausern, 1976). To be consistent, we utilized these same cut-offs, resulting in 17 out of the 58 individuals (approximately 30%) being identified as field dependent. We should point out that there appears to be some discrepancy in the literature regarding establishing strict cut-offs. As noted, a single cut-off may falsely classify individuals. We were cognizant of this and believe that the scores seem to indicate that an additional 10% of the sample could fall into the "field independent" category. We believe that this is something worth looking into in future studies with a larger sample size, especially because we agree with Rushkoff (2010) who suggested that pervasive digital media is affecting cognition in general.

As a comparison, the GEFT was administered to a randomly selected group of undergraduate students in digital media (N=25) and close to 80% indicated on the same questionnaire that they played video games regularly. Of this group, nearly 100% of the students made less than 5 errors on the GEFT, indicating them as being strongly field independent.

*Post Test Results* There was little indication that those who did not play video games prior to the activity would begin playing more often after participating in this intervention (Question 9: I am now more interested in video games). Approximately 56% percent of participants indicated that they disagreed with the statement that they were more interested in gaming than before. One of the multiple-choice questions asked whether their feelings about video games had changed as a result of their participation. Almost 62% of those asked indicated that their opinions had changed, with 95% of them indicating that it was for the positive. Of those who indicated that their opinions did not change, approximately one-half indicated that it was because they had already liked games before. The other half stated that they still did not care for games or still would rather be doing other things. A factor analysis for the type of console indicated that the Wiimote control in particular accounted for approximately 55% of the variance among responses.

*Comparison of pre and posttest responses* In order to investigate changes in attributions about games, a paired sample t-test was calculated (Table 1) to compare responses to the questions on the pretest and posttest. Responses to Questions 3 (Video games are too complex), 5 (I feel comfortable playing), 7 (Video game controllers are too difficult), Question 8 (Playing is intimidating), and Question 10 (Video games can teach things) all appeared to change significantly from the pretest to the posttest. Questions 1 and 9, while seemingly significant, cannot be included in the analysis because they dealt with different issues on the pre and posttest.

|         |                  |      | Pai               | red Difference     | 25                                              |       |        |     |                     |
|---------|------------------|------|-------------------|--------------------|-------------------------------------------------|-------|--------|-----|---------------------|
|         |                  |      |                   |                    | 95% Confidence<br>Interval of the<br>Difference |       |        |     |                     |
|         |                  | Mean | Std.<br>Deviation | Std. Error<br>Mean | Lower                                           | Upper | ţ      | df. | Sig. (2-<br>tailed) |
| Pair 1  | pregl - postq1   | 860  | 1.856             | .246               | -1.352                                          | 367   | -3.497 | 56  | .001                |
| Pair 2  | preg2 - postq2   | .140 | 1.187             | .157               | 175                                             | .455  | .893   | 56  | .376                |
| Pair 3  | preg3 - postq3   | .228 | .846              | .112               | .004                                            | .452  | 2.036  | 56  | .046                |
| Pair 4  | preg4 - postq4   | 214  | 1.022             | .137               | 488                                             | .059  | -1.569 | 55  | .122                |
| Pair 5  | preg5 - postq5   | 368  | 1.304             | .173               | 714                                             | 022   | -2.133 | 56  | .037                |
| Pair 6  | pregs - postq6   | 140  | .895              | .119               | 378                                             | .097  | -1.184 | 56  | .242                |
| Pair 7  | pregiz - postq7  | .368 | .993              | .132               | .105                                            | .632  | 2.800  | 56  | .007                |
| Pair 8  | pregg - postq8   | .211 | .796              | .105               | 001                                             | .422  | 1.997  | 56  | .051                |
| Pair 9  | pregg - postq9   | 596  | 1.522             | .202               | -1.000                                          | 193   | -2.959 | 56  | .005                |
| Pair 10 | preglQ - postq10 | .754 | 1.640             | .217               | .319                                            | 1.189 | 3.474  | 56  | .001                |

Table 1: Paired samples t-test comparing pre and post test responses.

In order to determine the interaction effects of the type of console on perceptions about game complexities and willingness to play, we calculated an ANOVA in which we compared responses on the relevant posttest questions (Questions 3, 5, 7, 8, and 9) as controlled for console type (Table 2). We found only one response to have an interaction effect at the .05-level: response to Post Question 9 (I am now more interested in playing). This suggests that

Table 2: ANOVA for Post Question 9 (I am now interested in playing) controlled for console type

|                | Sum of<br>Squares | df | Mean Square | F     | Sig. |
|----------------|-------------------|----|-------------|-------|------|
| Between Groups | 6.254             | 1  | 6.254       | 5.220 | .026 |
| Within Groups  | 65.887            | 55 | 1.198       |       |      |
| Total          | 72.140            | 56 |             |       |      |

some of the claims about the attraction and ease of use by Wii console makers hold some validity. We did find, however, that while these results seem to indicate that the type of console might help overcome some of the reluctance of this particular group about playing, nothing seemed to indicate that the type of console would have a significant effect on participants' long-term playing habits.

*Comparison between learning style, gender, and playing habits.* In order to determine possible interactions between various questions asked and field dependence, an ANOVA was calculated (Table 3). Significance at the .05 level was found for Questions 1 (I play video games regularly), 3 (video games are too complex), 9 (video games are too violent), and 10 (video games can teach) on the pre-test and Question 10 (video games can teach) on the post test. These results

seem to indicate preconceptions about games and potential indicators of game playing habits based on these cognitive styles.

|                                           |                | Sum of  |    |             |       |      |
|-------------------------------------------|----------------|---------|----|-------------|-------|------|
|                                           |                | Squares | df | Mean Square | F     | Sig. |
| Pre-Q1: I play                            | Between Groups | 4.924   | 1  | 4.924       | 4.397 | .043 |
| video games on a regular basis            | Within Groups  | 41.434  | 37 | 1.120       |       |      |
| Pre-Q3: Video<br>games are too<br>complex | Between Groups | 6.225   | 1  | 6.225       | 6.637 | .015 |
| Pre-Q9: Video<br>games are too<br>violent | Between Groups | 6.023   | 1  | 6.023       | 5.449 | .025 |
|                                           | Within Groups  | 40.900  | 37 | 1.105       |       |      |
|                                           | Total          | 46.923  | 38 |             |       |      |
| Pre-Q10: Video games can teach            | Between Groups | 5.050   | 1  | 5.050       | 7.001 | .025 |
| 0                                         | Within Groups  | 26.693  | 37 | .721        |       |      |
|                                           | Total          | 31.744  | 38 |             |       |      |
| Post-Q10: Video games can teach           | Between Groups | 2.780   | 1  | 2.780       | 3.498 | .012 |
|                                           | Within Groups  | 28.614  | 36 | .795        |       |      |
|                                           | Total          | 31.395  | 37 |             |       |      |

 Table 3: ANOVA of interaction between responses and field dependence for selected questions

# Table 4: Tests of Between-Subjects Effects: ANCOVA for field dependent and gender Dependent Variable: Post Question 3 (Video games are too complex)

| Source                | Type III Sum of<br>Squares | Df | Mean Square | F     | Sig. |
|-----------------------|----------------------------|----|-------------|-------|------|
| Corrected Model       | 8.711(a)                   | 2  | 4.355       | 4.731 | .016 |
| Intercept             | 6.156                      | 1  | 6.156       | 6.687 | .014 |
| Male/Female           | 5.056                      | 1  | 5.056       | 5.492 | .025 |
| Dependent/Independent | 4.933                      | 1  | 4.933       | 5.358 | .027 |
| Error                 | 29.461                     | 32 | .921        |       |      |
| Total                 | 403.000                    | 35 |             |       |      |
| Corrected Total       | 38.171                     | 34 |             |       |      |

R Squared = .228 (Adjusted R Squared = .180)

Table 4 shows where significance was detected based on the gender of participants. The table shows that only one pre-test question (Question 3: video games are too complex) indicates a significant interaction with gender. Previous studies identified gender differences and cognitive style affect learning and perceiving (Vermigli & Toni, 2004; Fritz, 1994). The results here generally follow the same track. As the majority of participants were females and field dependence seems to track to females, it was not surprising that an interaction might exist.

As can be seen in Tables 5 and 6 for pretest Questions 1 (I play video games regularly) and 2 (I would rather do other things) on the questionnaire, a minority of field dependent individuals indicated that they played video games regularly and a strong majority indicated that they would

rather be doing other things. When taken together, field dependence accounted for over 88% of the variance in the answers for these two questions (Table 7). What this means is that even though field dependent participants were in the minority, this factor appeared to have a significant impact on the perceptions of these individuals surveyed. These results also show in more detail how those identified as being field dependent responded to these two questions and show more accurately how negatively they felt about playing video games due to perceived complexity.

|         |                   | Frequency | Percent | Valid<br>Percent | Cumulative<br>Percent |
|---------|-------------------|-----------|---------|------------------|-----------------------|
| Valid   | 1-Strong Disagree | 22        | 37.9    | 39.3             | 39.3                  |
|         | 2-Disagree        | 8         | 13.8    | 14.3             | 53.6                  |
|         | 3-No Opinion      | 1         | 1.7     | 1.8              | 55.4                  |
|         | 4-Agree           | 12        | 20.7    | 21.4             | 76.8                  |
|         | 5-Strongly Agree  | 13        | 22.4    | 23.2             | 100.0                 |
|         | Total             | 56        | 96.6    | 100.0            |                       |
| Missing | System            | 2         | 3.4     |                  |                       |
| Total   |                   | 58        | 100.0   |                  |                       |

 Table 5: Frequency count of responses for field dependent participants on Question 1 (I play video games regularly)

 Table 6: Frequency count of responses for field dependent participants on Question 2 (I would rather do other things)

|                   |           |         | Valid   | Cumulative |
|-------------------|-----------|---------|---------|------------|
|                   | Frequency | Percent | Percent | Percent    |
| 1-Strong Disagree | 3         | 5.2     | 5.4     | 5.4        |
| 2-Disagree        | 9         | 15.5    | 16.1    | 21.4       |
| 3-No Opinion      | 8         | 13.8    | 14.3    | 35.7       |
| 4-Agree           | 22        | 37.9    | 39.3    | 75.0       |
| 5-Strongly Agree  | 14        | 24.1    | 25.0    | 100.0      |
| Total             | 56        | 96.6    | 100.0   |            |
| System            | 2         | 3.4     |         |            |
| Total             | 58        | 100.0   |         |            |

### Table 7: Total Variance Explained

|           |                     |          |            | Extrac | ction Sums o | f Squared  |
|-----------|---------------------|----------|------------|--------|--------------|------------|
| Component | Initial Eigenvalues |          |            |        | Loadings     | 5          |
|           |                     | % of     | Cumulative |        | % of         | Cumulative |
|           | Total               | Variance | %          | Total  | Variance     | %          |
| 1 (FD)    | 1.764               | 88.188   | 88.188     | 1.764  | 88.188       | 88.188     |
| 2 (FI)    | .236                | 11.812   | 100.000    |        |              |            |

Additional relevant data was found in the short answers provided before and after the gameplay sessions on the Wii or Xbox360 (see Table 10). On the pre-test, answers for the most appealing

aspect of video games included competition, gameplay, characters, nonlinearity, relaxation, immersion, storyline, interactivity, and online capabilities for socialization. This confirms the game design literature stressing these features that gamers want from electronic games (Rouse III, 2005). As expected, gameplay was seen as the most appealing aspect of games (22% responding), but surprisingly, story was also highly rated (17% of respondents indicated story as the most appealing factor). This suggests that this particular segment of gamers may enjoy watching games being played by others more so than playing games themselves. This answer from one respondent was particularly indicative of this: "I like video games that are fun to play and watch. Games you don't have to be involved with, but still enjoy." Other data from this question indicates a general lack of awareness of the particular features of games, as evidenced by the number of vague or ambiguous answers indicating immersion/involvement and interactivity as favorite features. Other respondents left this question blank or answered in multiple categories. Variant answers grouped with each category are shown beside the primary keywords in parentheses.

| Game Feature                            | Respondents | Percent |
|-----------------------------------------|-------------|---------|
| Gameplay (controller)                   | 13          | 22      |
| Story (overall story, characters, plot) | 10          | 17      |
| Immersion (involvement)                 | 8           | 14      |
| Graphics and sounds                     | 4           | 7       |
| Competition (difficulty)                | 2           | 3       |
| Online capabilities (socialization)     | 2           | 3       |
| Relaxation (fun)                        | 2           | 3       |
| Exercise                                | 1           | 2       |
| Interactivity                           | 1           | 2       |
| Violence                                | 1           | 2       |

Table 10: Pre-Test Short Answer Summary: Most Appealing Aspect of Video Games

Table 11 indicates similarly predicted results, with gameplay and learning the rules of a new game being seen as least appealing. 28% of respondents indicated a general distaste for learning the rules and controls of games in general, while an additional 9% focused on the controller specifically. Also unappealing to this sample was the amount of violence in games, with 17% of respondents noting this feature on their pre-test questionnaire.

Table 11: Pre-Test Short Answer Summary: Least Appealing Aspect of Video Games

| Game Feature                                 | Respondents | Percent |
|----------------------------------------------|-------------|---------|
| Gameplay (general complexity, learning       | 16          | 28      |
| game rules)                                  |             |         |
| Violence (immoral behaviors, stealing, etc.) | 10          | 17      |
| Gameplay (controller specifically)           | 5           | 9       |
| Time required (too time consuming)           | 3           | 5       |
| Technical issues (camera angles,             | 2           | 3       |
| disorientation, load times, glitches)        |             |         |
| Story (complicated plots, confusing story,   | 2           | 3       |
| boring story)                                |             |         |
| Repetition (boring, repetitive gameplay)     | 1           | 2       |
| Addiction (potentially addicting)            | 1           | 2       |

| Sexism (overly endowed female characters) | 1 | 2 |
|-------------------------------------------|---|---|
|-------------------------------------------|---|---|

Additional answers gathered from the pre-test short answers about whether or not the activity was likely to change one's mind about gaming revealed a variety of attitudes:

- I'm somewhat interested; some [games] I like and others I don't. I don't think one activity will change my mind.
- Yes, because I think video games might be able to teach some content in certain classrooms.
- *I'm open minded to the idea of incorporating video games (certain ones) into the classroom.*
- I have other things I would rather do with my time.

Short answers collected from the post-test revealed that in every case, the activity either positively influenced attitudes toward games or did not change attitudes (Table 12). No participants indicated that the activity negatively influenced their attitudes toward games, and several who selected "no change" indicated that they had liked playing games before the activity and still enjoyed them after the activity. Those non-gamers who played the Wii console were slightly more likely to have a more positive attitude toward games after the activity.

| Table 12: | Attitudes to | oward Games. | Xbox vs. Wi | i (Post-Test Survey | Answers) |
|-----------|--------------|--------------|-------------|---------------------|----------|
|           |              |              |             | (                   |          |

|                 | Participants (Wii) | Participants (Xbox) |
|-----------------|--------------------|---------------------|
| Positive Change | 8                  | 4                   |
| Negative Change | 0                  | 0                   |
| No Change       | 10                 | 11                  |

When participants were debriefed after the activity, additional information about the overall gameplay experience was collected. Some of the feedback from participants reveled preexisting notions of gameplay being difficult that were not confirmed by the activity. For example, one participant using the Wii noted, "I just never tried. I just assumed it was hard. It's actually not that bad." Other Wii users were even more positive, noting, "It was quite simple – and addictive!" and "It was more fun than I thought. I wouldn't mind playing some more." Not every Wii player was enthusiastic; one stated, "I'd rather do other things with my time." Some players also equated the heightened kinesthetic dimension of the Wii with increased interactivity and indicated enjoyment related to this.

Feedback from Xbox360 players included statements such as "I think the games can be fun and educational, but I don't have the time to spend playing them," and "I enjoyed playing but I would rather be doing something else." Some Xbox360 players also enjoyed the activity, though, and one stated "I loved the golf game. I thought it would be boring, but once I started playing I didn't want to stop," another described it as "a fun and positive experience," and yet another said "It actually was kind of cool." Xbox360 players were also more likely to address the difficulty curve, which makes sense given the additional complexity of the Xbox controller relative to the Wiimote. One player noted the importance of practice in learning the controls.

### Discussion

In this study, we examined the impact of cognitive style on attitudes toward console video games. Following up on this, we devised a preliminary experiment in which participants played the same game on either the Nintendo Wii or Microsoft Xbox360 console in order to determine if attitudes were likely to change based on the particular type of console and gameplay that was advertised as being easier and less cumbersome to play. Although there were relatively few participants in this study, the results of this pilot experiment suggest further research along these lines. These preliminary results indicate that the type of console might help overcome some of the reluctance of this particular group about playing, but nothing seemed to point toward any long-term changes would result from the introduction of a different type of console. These findings suggest that the goal of using video games as learning technologies may face significant barriers in terms of teacher attitudes and their eventual move to incorporate games in the classroom.

We suggest that this reluctance may be partly due to perceived difficulty of playing games on the part of field dependent individuals. We found that, in contrast to college undergraduates in more technological disciplines (in our case, digital media students), a relatively larger segment of preservice students (30%) were classified as field dependent according to the GEFT. These students also tended to initially be more negative toward games prior to their experience with them.

On the other hand, after they became exposed to the actual mechanics of a game in an applied setting, many of them shifted in a more positive direction their feelings toward video games. This was especially true of those participants who played using the Wii console. This is an encouraging finding that bears further investigation. It is also worth studying this relationship using other genres of console video games besides just sports games such as *Tiger Woods PGA Tour 07*.

Gender differences seem to be an area that needs further review. While there are some indications in the research that females might historically be less likely to engage with technology (Viswanath, 2000), we did not set out to examine this effect. The makeup of the preservice sample was highly slanted towards females versus males, where the opposite was true for the digital media group. There seems to be an interesting interaction among gender and learning preferences and cognitive style. While we cannot draw any major conclusions from this particular study, we do suspect that controlling for gender would uncover some interesting results. Results also seem to indicate that becoming familiar with video gameplay needs to become a more important aspect of pre-service teacher training. We found that many of those who did not believe that games would (or should) become a part of their instructional plans, eventually changed their minds after their experiences with them. This concurs with previous research that all technology should become a required aspect of pre-service instruction (Brush, Glazewski, Rutowski & Berg, 2009; Schrader, Zeng & Young, 2006).

The results of this study are also important because they indicate that one barrier to supporting the adoption of games in the classroom may be the lack of enthusiasm for games due to incorrect preconceived notions that correspond to their general learning styles on the part of those who elect to go into the teaching profession. We can only hypothesize the extent to which this issue is accentuated on the part of older teachers, who are further removed in age from their millennial students who are being brought up in the digital age. While we cannot generalize these results to any other groups, we do suspect that many teachers gravitate towards showing preference to learning activities associated with the field dependent cognitive style. Further, the effect of these preferences appear to have a bearing on general attitudes towards games, and in turn seem to be affecting their choices of instructional interventions for their classrooms. Based on the initial findings in this study, we believe these hypotheses are worthy of further, more detailed investigation.

### Conclusion

We do not suggest that all preconceived, negative reactions towards games can be attributed to cognitive style. But, based on these findings, we believe we can hypothesize with a certain degree of confidence that many of teachers' negative attitudes towards using video games in their classrooms can be overcome through changes and modifications to teacher training curricula. This might include more time allotted for making these individuals more comfortable with teaching as it occurs in gaming, such as through the mechanism of trial and error and the idea of rewarding failure to increase engagement and the willingness to take risks. This can be accomplished with methods courses that include familiarization with the gaming genre and additional exposure to the variety of simulation and gaming tools that would be useful in instructional settings. Unfortunately, given that many of the instructors that we know who teach pre-service teachers also themselves lack training in using games to teach effectively, this is likely to be more difficult to accomplish.

We suggest that developing an awareness of the barriers of psychological attitudes and preconceived notions towards games on the part of those responsible for teaching with games is an important first step. If the cognitive residue theorized by Salomon et al. (1991) applies to game interactions, then even a simple exposure to games may prove beneficial to changing teacher attitudes about games and in improving self-efficacy about these potential teaching and learning technologies. Future longitudinal studies involving a review of when and how preservice teachers are exposed to instructional gameplay can help to confirm or dispute these findings and guide future policy efforts.

### References

- Altun, A., & Cakan, M. (2006). Undergraduate students' academic achievement, field dependent/independent cognitive styles and attitude toward computers. Educational Technology & Society, 9(1), 289-297.
- Authors. (2009). The role teachers' expectations and value assessments play in their adopting and integrating video games into the curriculum. *British Journal of Educational Technology*.
- Ayersman, D. J. (1995). Effects of knowledge representation, format, and hypermedia instruction on metacognitive accuracy. *Computers in Human Behavior*, 11, 533-555.
- Bloom-Feshbach, J. (1980). Differentiation: field dependence, spatial ability, and hemispherical specialization. *Journal of Personality*, 48(2), 135-148.
- Brush, T., Glazewski, K., Rutowski, K., & Berg, K. (2009). Integrating technology in a fieldbased teacher training program: The PT3@ASU project. *Educational Technology Research and Development*, 51(1), 57-72.
- Burton, J. K., Moore, M., & Holmes, G.A. (1995). Hypermedia concepts and research: An overview. *Computers in Human Behavior*, 11(3-4), 345-369.
- Chen, C. & Rada, R. (1996). Interacting with hypertext: A meta-analysis of experimental studies. Human Computer Interaction, 11, 125-156.
- Entertainment Software Association. (2008). 2008 Game Player Data. Retrieved October 26, 2009, from http://www.theesa.com/facts/gameplayer.asp.
- Frank, B. M. (184) Effect of field independence-dependence and study technique on learning from a lecture. *American Educational Research Journal*, 21(3), 669-678.
- Frank, B. M. (1986). Cognitive styles and teacher education: Field dependence and areas of specialization among teacher education majors. *The Journal of Educational Research*, 80(1), 19-22.
- Fritz, R. L. (1994). Gender differences in field-dependence and educational style. *Journal of Vocational Education Research, 19*(1), 1-21.
- Garger, S. & Guild, P. (1984, February). Learning Styles: The crucial differences. *Curriculum Review*, 9-12.
- Gee, J. P. (2003). *What Video Games Have to Teach Us About Learning and Literacy*. New York: Palgrave Macmillan.

- Hong, J, Hwang, M., Tam, K., Lai, Y. & Liu, L. (2012). Effects of cognitive style on digital jigsaw puzzle performance: A GridWare analysis. *Computers in Human Behavior*, 28(3), 920-928.
- Huebner, T. (2009). The continuum of teacher learning. How Teachers Learn, 66(5), 88-91.
- Juul, J. (2005). *Half-Real: Video Games between Real Worlds and Fictional Rules*. Cambridge: The MIT Press.
- Kagan, J., Rosman, B. L., Day, D., Albert, J. & Phillips, W. (1964). Information processing in the child: Significance of analytical and reflective attitudes. *Psychological Monographs*, 78(1).
- Kenny, R. (2007). Evaluating cognitive tempo in the digital age. *Educational Technology Research and Development Journal* 57(2), 40-45.
- Kenny, R. (2002). *The effects of cognitive style and gender on verbatim and gist memory for rapidly-presented montage video*. Doctoral Dissertation. Gainesville, FL: University of Florida.
- Kenny, R. & Wirth, J. (2009). Implementing constructivist learning experiences through best practices in Interactive Performance. *Journal of Effective Teaching*, 9, 34-47.
- Koster, R. (2004). A theory of fun for game design. Phoenix, AZ: Paraglyph.
- Loh, C. S. (2009). Researching and developing serious games as interactive learning instructions. *International Journal of Gaming and Computer Mediated Simulation*, 1(4), 1-9.
- Lovrich, D. (2006). The science teacher : <u>Feature</u> classroom applications of top-down and bottom-up processing. *NSTA WebNews Digest*. Retrieved: May 1, 2012 from <u>http://www.nsta.org/publications/news/story.aspx?id=53144&print=true</u>
- McKenna, F. P. (2006). Learning implications of field dependence-independence: Cognitive style versus cognitive ability. Applied Cognitive Psychology, 4(6), 425-437.
- Mitroff, S. R., Sobel, D. M. & Gopnik, A. (2006). Reversing how to think about ambiguoius figure reversal: Spontaneous alternating by uniformed observers. *Perception*, 35, 709-715.
- Pillay, H., Brownlee, J., & Wilss, L. (1999). Cognition and recreational computer games: Implications for educational technology. *Journal of Research on Computing in Education*, 32(1), 203-216.

- Pithers, R. (2000). Field Dependence-Field Independence and Vocational Teachers. Working Paper. Retrieved June 1, 2010 from http://www.uts.edu.au/fac/edu/rcvet/working%20papers/WP0051Pithers.pdf.
- Rouse III, R. (2005). *Game Design Theory and Practice* (2nd ed.). Plano, TX: Wordware Publishing.
- Rushkoff, D. (2010). *Program or be programmed: ten commandments for the digital age*. New York: OR Books.
- Rushkoff, D. (1999). *Playing the future: What we can learn from digital kids*. New York: Riverhead Trade.
- Sadler-Smith, E. & Riding, R. (1999). Cognitive style and instructional preferences. *Instructional Science*, 27(5), 355-371.
- Salen, K., & Zimmerman, E. (2004). *Rules of Play: Game Design Fundamentals*. Cambridge, Mass: The MIT Press.
- Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. *Educational Researcher*, 20(3), 2-9.
- Saracho, O. N. (1991). Students' preference for field dependence-independence teacher characteristics. *Educational Psychology: An International Journal of Experimental Educational Psychology*, 11(3-4), 323-32.
- Schell, J. (2008). The art of game design: A book of lenses. Burlington, MA: Morgan Kaufmann.
- Scheick A. J. (2008). Virtual vistas: High school students describing their experiences in virtual schools. Doctoral Dissertation. Orlando, FL: University of Central Florida.
- Schrader, P. G., Zheng, D. & Young, M. (2005). Teacher's perceptions of video games: MMOGs and the future of pre-sevice teacher education. *Innovate*, 2(3). Retrieved March 1, 2012, from: http://innovateonline.info/pdf/vol2\_issue3/
- Shelly, G. B., Cashman, T. J., Gunter R. & Gunter, G. (2007) Teachers Discovering Computers: Integrating Technology and Digital Media in the Classroom. Boston, MA: Thomson Course Technology.
- Vermigli, P & Toni, A. (2004). Attachment and field dependence: Individual differences in information processing. European Psychologist, 9(1), 43-55.
- Viswanath, V. (2000). Why don't men ever stop to ask for directions? Gender, social influence and their role in technology acceptance and usage behavior. *MIS Quarterly*, 24, 1.
- Witkin, H. A., Dyk, R. B., Faterson, H. F., Goodenough, D. R., & Karp, S. A. (1962). *Psychological differentiation: Studies of development*. New York: John Wiley and Sons.

- Witkin, H. A., Goodenough, D. R., & Oltman, P. K. (1979). Psychological differentiation: current status. *Journal of Personality and Social Psychology*, *37*(7), 1127-1145.
- Witkin, H., Oltman, P., Raskin, E., & Karp, S. (1971). *A manual for the Embedded Figures Test*. Palo Alto: Consulting Psychologists Press.
- Zenhausern, R. & Renna, M. (1976). Field dependency and perceptual cues in perception of two trapezoid illusions. *Perceptual and motor skills*, 43(3), 1043-9.

# **Appendix A: Pre-Test Questionnaire**

Participant ID:

For each of the statements below, please indicate the extent of your agreement or disagreement by checking the appropriate box under the column that describes your feelings.

|                                                                    | Strongly<br>Disagree | Disagree | No<br>Oninion | Agree | Strongly<br>Agree |
|--------------------------------------------------------------------|----------------------|----------|---------------|-------|-------------------|
|                                                                    | Diskgree             |          | - Opinion     |       | g. ee             |
| 1. I play video games on a regular basis.                          |                      |          |               |       |                   |
| 2. I would rather do other things than play video games.           |                      |          |               |       |                   |
| 3. Video games are too complex to learn.                           |                      |          |               |       |                   |
| 4. Video games are too time-consuming to utilize in the classroom. |                      |          |               |       |                   |
| 5. I feel comfortable playing video                                |                      |          |               |       |                   |
| games.                                                             |                      |          |               |       |                   |
| 6. I prefer to play video games that have                          |                      |          |               |       |                   |
| a strong story.                                                    |                      |          |               |       |                   |
| 7. Video game controllers are too difficult to use.                |                      |          |               |       |                   |
| 8. The act of playing video games is                               |                      |          |               |       |                   |
| intimidating to me.                                                |                      |          |               |       |                   |
| 9. I think video games are too violent to                          |                      |          |               |       |                   |
| use in the classroom.                                              |                      |          |               |       |                   |
| 10. I think video games can teach things                           |                      |          |               |       |                   |
| in the classroom.                                                  |                      |          |               |       |                   |

#### Short Answers (use back of paper if you need to)

| How familiar w | vith video games are y | ou? (Circle one) |
|----------------|------------------------|------------------|
| Very familiar  | Somewhat familiar      | Not familiar     |

What do you think is the most appealing aspect of video games (game play, controller, story, involvement, etc.)?

What do you think is the least appealing aspect of video games (game play, controller, learning how to play, etc.)?

As a result of doing this activity, do you think your feelings about video games will change? (Circle one)

Yes No

Explain your choice:

# **Appendix B: Post-Test Questionnaire**

Participant ID: \_\_\_\_\_

For each of the statements below, please indicate the extent of your agreement or disagreement by checking the appropriate box under the column that describes your feelings.

|                                            | Strongly<br>Disagree | Disagree | No<br>Opinion | Agree | Strongly<br>Agree |
|--------------------------------------------|----------------------|----------|---------------|-------|-------------------|
|                                            | g                    |          | • F           |       |                   |
| 1. I felt that the console I played was    |                      |          |               |       |                   |
| intuitive and easy to use.                 |                      |          |               |       |                   |
| 2. I would rather do other things than     |                      |          |               |       |                   |
| play video games.                          |                      |          |               |       |                   |
| 3. Video games are too complex to learn.   |                      |          |               |       |                   |
| 4. Video games are too time-consuming      |                      |          |               |       |                   |
| to utilize in the classroom.               |                      |          |               |       |                   |
| 5. I feel comfortable playing video        |                      |          |               |       |                   |
| games.                                     |                      |          |               |       |                   |
| 6. I prefer to play video games that have  |                      |          |               |       |                   |
| a strong story.                            |                      |          |               |       |                   |
| 7. Video game controllers are too          |                      |          |               |       |                   |
| difficult to use.                          |                      |          |               |       |                   |
| 8. The act of playing video games is       |                      |          |               |       |                   |
| intimidating to me.                        |                      |          |               |       |                   |
| 9. As a result of doing this activity I am |                      |          |               |       |                   |
| now more interested in playing video       |                      |          |               |       |                   |
| games.                                     |                      |          |               |       |                   |
| 10. I think video games can teach things   |                      |          |               |       |                   |
| in the classroom.                          |                      |          |               |       |                   |

### Short Answers (use back of paper if you need to)

| As a result of doing this activity has your view of video games changed? If so, how? If not, why not?                                                  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| As the result of doing this activity, what do you think is the most appealing aspect of video games (game play, controller, story, involvement, etc.)? |  |  |  |  |  |
| As a result of doing this activity, what do you think is the least appealing aspect of video games (game play, controller                              |  |  |  |  |  |
| The result of doing time address, what do you time is the feast appearing aspect of video games (game phay, controller,                                |  |  |  |  |  |
| learning how to play, etc.)?                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
| As a result of doing this activity, have your feelings about video games changed? (Circle one)                                                         |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
| For the positive — For the positive — No Change                                                                                                        |  |  |  |  |  |
| For the positive — For the negative — No Change                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
| Explain your choice:                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                        |  |  |  |  |  |